The gender income gap, squared
November 14th, 2024
3 min
Datawrapper lets you show your data as beautiful charts, maps or tables with a few clicks. Find out more about all the available visualization types.
Our mission is to help everyone communicate with data - from newsrooms to global enterprises, non-profits or public service.
We want to enable everyone to create beautiful charts, maps, and tables. New to data visualization? Or do you have specific questions about us? You'll find all the answers here.
Data vis best practices, news, and examples
250+ articles that explain how to use Datawrapper
Answers to common questions
An exchange place for Datawrapper visualizations
Attend and watch how to use Datawrapper best
Learn about available positions on our team
Our latest small and big improvements
Build your integration with Datawrapper's API
Get in touch with us – we're happy to help
This article is brought to you by Datawrapper, a data visualization tool for creating charts, maps, and tables. Learn more.
Hi, this is Gregor, co-founder and CTO of Datawrapper. With this week’s Weekly Chart, I’m returning to my favorite topic: the climate crisis.
Last week deadly wildfires were raging at the U.S. west coast in California, Oregon, and Washington (and they still are). At the same time, Hurricane Sally hit Florida and Alabama, causing major floods and damages. This bizarre episode reminded me of a paradox of the climate crisis we’re now living in. While temperatures are rising and droughts and wildfires become the new normal, there is more rain in a lot of places than there has been in the past.
I first read about it this phenomenon in the German national weather service (DWD) yearly report about climate change[1], and almost couldn’t believe it. How can there be more rain now than thirty years ago? After the extremely hot summers of 2018 and 2019, this year has again been very dry. As a hobby gardener, I follow the weather closely and remember the long stretches of days without rain.
That’s why for this week’s Weekly Chart, I set out to find a visualization that shows this paradox. And I found a chart with the weird Latin name thermo-pluvio diagram (thermo for heat, and pluvio for rainfall)[2]. It shows anomalies[3] in air surface temperature and precipitation for each month of a year in a scatterplot:
I like these kinds of four-quadrants scatterplots because they describe a clear contextual “map” in which we can quickly find each data point. The added lines make it clear that we’re talking about anomalies.[4]
The diagram shows that January, March, and October 2019 where hotter and wetter than the base period, while April, February, and June were hotter and dryer. We also see May jump out as the only month in 2019 that has been colder.
When looking at the current year, it seems as if most of the rain that was “missing” in other months fell in February 2020:
As we see, there is much variation between the years. It makes sense to “zoom-out” a little further and look at seasons instead of months. The next view allows us to look at an entire decade at once. Unsurprisingly, we see most seasons on the “hotter” side of the chart, but most seasons often appear on both sides of the dry/wet spectrum:
But since it’s still hard to interpret this “confetti explosion” chart, I’m ending this post with a much more simplified view of the average seasonal temperature and precipitation anomaly over the past 20 years.
And indeed, on average, three out of four seasons have been more rainy compared to the 1961-1990 base period, especially the winter months between November and January. The typical new dry season in Germany is not the summer, but spring (from March to May).
That’s it for this week. As usual, you can find the R script for this analysis on Github if you want to play around with it (feel free to re-use it).
Comments